数学和自然科学三个本质差别

1.测量和逻辑推理的区别

我们知道几何学源于古埃及,当地人出于农业生产的考虑,对天文和土地进行度量,发明了几何学。但是,度量出来的几何其实和真正的数学还有很大的差距。

比如说,古代文明的人们确实观察到勾股数的现象,他们画一个直角三角形,勾三尺长、股四尺长时,弦长恰好就是五尺长,于是就有了勾三股四弦五的说法。

但是这里面存在一个大问题,我们说长度是三尺,其实并非数学上准确的长度,用尺子量出来的3,可能是3.01,也可能是2.99。这样一来勾三股四弦五就是一个比较模糊的说法了。

在数学上,观察的经验可以给我们启发,但是它不能成为我们得到数学结论的依据,数学上的结论只能从定义和公理出发,使用逻辑严格证明得到,不能通过经验总结出来。

讲回到勾股定理,一个工匠注意到勾三股四弦五这个现象,和提出一个具有普遍意义的定理是两回事。

我们通过观察还可以发现,如果勾3.5,股4.5,那么弦大约是5.7,这个“大约”的误差只有万分之一点六左右(弦长大约是5.700887),古代任何测量都发现不了。这时如果你说勾3.5股4.5弦5.7,从物理上来说基本正确,但是在数学上就错了。这是第一个差别,就是测量会出错,但推理不会。

那么,如果我们抛开误差的影响,是否可以认为早期文明的人们发现了勾股定理呢?也不能,只能说他们观察到一些现象,而非发现了定理。这涉及到数学和自然科学的第二个主要区别,证实和证明的区别了。

2.用事实证实和用逻辑证明的区别

在自然科学中,一个假说通过实验证实,就变成了定律。比如说与牛顿同时代英国的大科学家波义耳同法国科学家马略特一同发现:一个封闭容器中气体的压强和体积成反比。这很好理解,因为体积压得越小,内部的压强肯定越大。这两个人通过很多实验,都证实了这件事,于是这个定律就由他们两个人的名字命名了。

但是,如果有一个非常爱较真的人一定要抬杠,说你们证实了所有的情况(各种体积和压强的组合)吗,你们敢保证没有例外么?波义耳和马略特肯定会说,我们不敢保证没有例外,但是这个规律你平时使用肯定没有问题。

果然,后来人们真的发现当压强特别大时,这个定律就不管用了。但是没有关系,在大多数条件下,这个定理依然成立,今天人们在做产品时,依然可以用。

事实上,今天几乎所有的自然科学的定律和理论,不仅存在一个被推翻的可能性,而且有很多的例外。比如,证实引力波的实验,也只能保证99.9999%的可能性结论是对的。

但是,在数学上,用实验来验证一个假说(在数学上常常被称为猜想)是不被允许的,我们在后面介绍无穷大时,大家还会看到这甚至是做不到的。数学的结论只能从逻辑出发,通过归纳或者演绎得出来。它必须完全正确,没有例外,因为但凡有一个例外(也被称为反例),就要被完全否定掉。这里面最著名的例子就是哥德巴赫猜想。

今天人们利用计算机,在可以验证的范围内,都验证了这个猜想是对的,但是因为没有穷尽所有的可能,就不能说猜想被证明了。因此,我们依然不能在这个基础上,构建其它的数学定理。

所以,数学世界和测量世界第二个区别就是,数学理论必须要证明,保证没有例外。

3.科学结论相对性和数学结论绝对性的区别

为什么数学要那么严格,它的定理为什么不能有任何例外,更不能特殊情况特殊处理呢?因为数学上的每一个定理都是一块基石,后人需要在此基础上往前走,试图建立一块新的基石,然后数学的大厦就一点点建成了。在这个过程中不能有丝毫的缺陷,一旦有,整个数学大厦就轰然倒塌了。

还是以勾股定理为例,它的确立,其实教会了人们在平面计算距离的方法,在此基础之上,三角学才得以建立,笛卡尔的解析几何才得以确立,再往上才能建立起微积分等数学工具。此外我们这个模块后面会讲到的无理数的出现、黄金分割,都和它有关。

人类今天发明的各种科技,像无线通信、航天等等,依赖于这些定理。如果出现了一个违反毕达哥拉斯定理的反例,不仅是这个定理失效了,而且整个数学就完蛋了,我们的科技也就时灵时不灵了。因此,数学上的每一个定理,必须也只能通过逻辑推演来证明,用多少实例来验证都没有用。

理解了数学定理确立的过程,以及它随后产生的巨大影响,我们就清楚定理和定理证明在数学中的重要性了。正是因为这个原因,西方才将这个定理命名为毕达哥拉斯定理,以彰显他的贡献。是他明确提出这个定理,并且严格地证明了它,从此毕达哥拉斯定理才成为了数学上普遍的规律。

有了一个个的定理,数学就得以建立起来,而且这个建立在逻辑推理基础上的大厦很坚固。在数学上,当一个新的定理被证明后,就会产生很多自然的推论,每一个推论可能都是一个重大的发现,甚至能带来人类认识的升级。

(0)

相关推荐

  • 暑假特辑13 有趣的《勾股定理》及证法

    时间飞快,暑假即将进入尾声,最后的几讲,<暑假特辑>将为你带来更多数学史话,数学故事,让大家在探索发现中,迎接新的学期! 一.前言 首先,我们来看一张明信片.这是中国邮政为了纪念2002年 ...

  • 初三数学(常用公式、定理、结论)归纳

    初三数学(常用公式.定理.结论)归纳

  • 公理定理象数理

    (一) 记得有一堂数学课,老师讲勾股定理. 说实话,她讲了半天我也没弄明白她是怎么证明出来"直角三角形的两条直角边的平方和等于斜边的平方". 我举手问她:"老师,你是怎么 ...

  • 初中数学学习的三种低效方式

    初中是基础教育中承上启下的阶段,初中的学习会对整个中学阶段的学习产生影响.不仅会影响现阶段的学习,同时还与高中阶段的学习产生衔接.其中初中数学是整个中学阶段数学学习的基础,高中数学中的几何.代数等问题 ...

  • 中考数学复习的三个小窍门

    中考数学复习的三个小窍门

  • 老高考数学:郑州三模(全国一卷)(2021.05.11)

    [郑州三模](全国一卷) 河南.山西.江西.安徽四省,在2021年高考中,仍同上年一样,大概率使用全国Ⅰ类卷. 下面是昨天下午刚考完的郑州三模数学试题!其中理数卷为导数压轴,第一问,切线放缩直接可看出 ...

  • “对女生好”和“跪舔”本质差别在哪?

    先给大家讲个故事-- 我朋友小俊从高中喜欢一个女生,可以说对她无微不至,早上送早餐,晚上送宵夜,外加上下学接送. 但女生自始至终对小俊没任何表示,直至高中毕业两人分开了. 直到小俊结婚前,女生来找小俊 ...

  • 数学:1.学好数学要抓住三个“基本”:基...

    数学: 1.学好数学要抓住三个"基本":基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练. 2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太 ...

  • 自信源自对生命的认知,越自信的人越掌握生命的三个本质认知

    文/唐若 唐若心学原创作品,违者必究 在很多人心目中,认为自信是需要附带很多条件的.他们把自信变成了外在条件的附件. 事实上,如果我们总是用外在的条件来衡量自信,我们是永远无法拥有真正的自信的. 因为 ...

  • 国学大师蒙曼很谦虚,跟于丹有本质差别

    释墨轩文化小天地:蒙曼接棒于丹,被称为国学大师的她很谦虚,与于丹有本质的差别-与于丹相比,当下的蒙曼风头正旺,并且还一度被喜欢的国学粉丝们称为国学大师.当然毕业于北大古代史专业的蒙曼可以说是非常有才华 ...

  • 五年级:美妙数学之“旋转三要素”(0419五)

    同学们,这些生活中熟悉的场景,你知道是什么现象吗? 我知道,这是二年级就认识的旋转现象. 我们一起问问数学老爷爷,什么是旋转? 什么是旋转? 旋转(xuán zhuǎn),基本解释:物体围绕一个点或一 ...

  • 小学三年级数学下册第三、四单元达标检测题...

    小学三年级数学下册第三.四单元达标检测题,附答案! 同学们,数学期中考试这就快到了,抓紧练起来吧. 今天分享给大家第三四单元达标检测题,附答案,对照一下,看看自己掌握的怎么样了?