深度解析:机器人自主定位导航技术知多少!感知与行动能力的关键

随着智能机器人的快速发展,服务类的机器人也极为火爆起来,从最早的扫地机器人开始,家庭陪伴机器人、送餐机器人等陆续进入公众视线。不管什么类型的机器人,只要自主移动,就需要在家庭或其他环境中进行导航定位。假如用金字塔来表示机器人技术,那么定位导航作为最底层技术,正是构建整个机器人的核心关键。如何实现移动机器人在不确定环境中自主定位导航一直都是机器人研究的一大核心课题,行业内对其进行了多年的研究。自主导航作为一项核心技术,是赋予机器人感知和行动能力的关键。今天我们就来解析一下机器人自主定位导航技术。

自主定位导航是机器人实现智能化的前提之一,是赋予机器人感知和行动能力的关键因素。如果说机器人不会自主定位导航,不能对周围环境进行分析、判断和选择,规划路径,那么,这个机器人离智能还有一大截的差距。在不同的行业领域中不同的定位导航技术有着不同的优势,合理选用才能够将智能机器人的性能发挥到最大。

1
视觉定位导航技术

视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。

在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。视觉定位导航技术应用领域广泛,主要应用于无人机、手术器械、交通运输、农业生产等领域。

2
超声波定位导航技术

超声波定位导航的工作原理是由超声波传感器发射探头发射出超声波,超声波在介质中遇到障碍物而返回接收装置。通过接收自身发射的超声波反射信号,根据超声波发出及回波接收时间差及传播速度,计算出传播距离S,就能得到障碍物到机器人的距离,即有公式: S=Tv/2 式中,T—超声波发射和接收的时间差;v—超声波在介质中传播的波速。

超声波定位导航技术成本低廉并可以识别红外传感器识别不了的物体,比如玻璃、镜子、黑体等障碍物。但是这种定位导航技术容易受天气、周围环境等以及障碍物阴影,表面粗糙等外界环境的影响,适用范围较小导航精度差。

3
激光定位导航技术

激光定位导航的原理和超声、红外线的原理类似,主要是发射出一个激光信号,根据收到从物体反射回来的信号的时间差来计算这段距离,然后根据发射激光的角度来确定物体和发射器的角度,从而得出物体与发射器的相对位置。

工作时,激光经过旋转镜面机构向外发射,当扫描到由后向反射器构成的合作路标时,反射光经光电接收器件处理作为检测信号,启动数据采集程序读取旋转机构的码盘数据(目标的测量角度值),然后通过通讯传递到上位机进行数据处理,根据已知路标的位置和检测到的信息,就可以计算出传感器当前在路标坐标系下的位置和方向,从而达到进一步导航定位的目的。

4
GPS全球定位技术

如今,在智能机器人的导航定位技术应用中,一般采用伪距差分动态定位法,用基准接收机和动态接收机共同观测4颗GPS卫星,按照一定的算法即可求出某时某刻机器人的三维位置坐标。差分动态定位消除了星钟误差,对于在距离基准站1000km的用户,可以消除星钟误差和对流层引起的误差,因而可以显着提高动态定位精度。

但是因为在移动导航中,移动GPS接收机定位精度受到卫星信号状况和道路环境的影响,同时还受到时钟误差、传播误差、接收机噪声等诸多因素的影响,因此,单纯利用GPS导航存在定位精度比较低、可靠性不高的问题,所以在机器人的导航应用中通常还辅以磁罗盘、光码盘和GPS的数据进行导航。另外,GPS导航系统也不适应用在室内或者水下机器人的导航中以及对于位置精度要求较高的机器人系统。

除此之外,红外线定位导航、iBeacon定位导航和灯塔定位导航等也是智能机器人比较常用的自主定位导航技术。

(0)

相关推荐