初识微分、积分电路的本质以及电容的阴谋,不谈公式更易懂

很多朋友觉得PID是遥不可及,很神秘,很高大上的一种控制,对其控制原理也很模糊,只知晓概念性的层面,知其然不知其所以然,那么本期从另类视角来探究微分、积分电路的本质,意在帮助理解PID的控制原理(PID:P表示比例控制;I表示积分控制;D表示微分控制)。
在认清微分、积分电路之前,我们都知道电容的特性:电容的电流超前电压相位90°,很多教材都这么描述,让人很费解,其本质又是什么呢?
❤要彻底掌握微分、积分电路或PID控制思路,首先得了解电容。

❤电容就是装载电荷的容器,从微观角度看,当电荷流入容器时,随着时间的变化极间电场逐渐增大;以图1为例:
①充电开始时Uc=0V,压差△U=Ur=Ui,此刻容器内无电荷,也就无电场排斥流入的电荷;所以电流Ic最大,表现为容抗最小,近似短路;
②当Uc上升,压差△U开始减小,该过程形成电场,容器开始排斥流入的电荷;电流Ic逐渐减小,表现为容抗逐渐增大;
③当Uc=Ui,压差△U=Ur=0V,此刻容器内电场最强,以最大排斥力阻止流入的电荷;电流Ic=0,表现为容抗最大,近似开路。
图1:电容容器充电模型
❤当电荷流出容器时,随着时间的变化极间电场逐渐减小;该放电过程的电容可看成是一个内阻为0的电压源,以图2为例(移除电源并接地):
①放电开始时Uc=Ui,此刻容器内充满电荷,因此电场最强,而电阻不变,则放电电流Ic最大(方向与充电相反),电阻两端的电压Ur=Uc,则Ur=Ui;
②当Uc下降,该过程电场减弱,放电电流Ic逐渐减小,Ur=Uc也逐渐减小;
③放电耗尽Uc=0V,此刻容器内无电荷,因此无电场,Ur=0V。
图2:电容容器放电模型
❤电容就好比水桶一样,流入的水流无论是大还是小,水位的变化一定是从最低位开始连续上升的;而电容内的电荷也是逐渐从0开始积累起来的,积累过程与自然常数e有关系,这里就不深入讨论了。
图3就是电容充放电的电压-电流曲线。
图3:电容充放电,电压-电流曲线
❤联系前面的分析,可总结为:
①电容电压不能突变,电流可突变(教材的定义是电容的电流与电压的变化率成正比);
②充电过程中的电容可等效成一个可变电阻,放电过程中的电容可等效成一个电压源;
③电容电流反映的是单位时间内流动的电荷量,电容电压(或电场)反映的是电荷量的多少。通俗的理解就是流动的电荷才会导致电荷量多少的变化(与①相吻合);用数学语言描述则是电容的电流超前电压相位90°;
④电容充放电速度与电容和电阻大小有关。

对电容充分了解之后,首先我们先来认识最简单的分压电路,如图4根据欧姆定律VCC=2.5V,该纯阻性的分压电路就是比例运算电路的雏形。
图4,:分压电路
❤如图5,我们把R2换成104(0.1μF)电容,C1电容充满电后近似开路,VCC=5V;该电路就是积分运算电路的雏形。那么把5V改成信号源就构成了低通滤波电路。
图5:积分电路
❤如图6为上图的充电波形,红色表示5V的波形,蓝色表示VCC的波形,因为电容充电时的容抗由小变大直至开路,所以分压VCC也由小变大直至为5V。而且电容充电需要一定的时间,导致VCC的波形要缓一些。(该5V是开关电源上电软启动时的输出波形)
图6:积分电路波形
❤把图4图5组合就得到图7的电路,这就是我们经常使用的PI电路(比例积分),在参考电压或分压电路里很常见,加电容的目的就是增加延时性,稳定VCC的电压不受5V波动而波动,VCC=2.5V。
图7,:PI电路
❤把图5中电容和电阻的位置交换一下得到如图8的电路,C1电容充满电后近似开路,VCC=0V;该电路就是微分运算电路的雏形。那么把5V改成信号源就构成了高通滤波电路。
图8:微分电路
❤如图9为上图的充电波形,红色表示5V的波形,蓝色表示VCC的波形,因为电容充电时的容抗由小变大直至开路,所以分压VCC由大变小直至为0V。也就是红色波形从0开始跳变一瞬间,VCC已经是最大值,所以微分有超前预判的性质(反映的是输入信号的变化率)。
图9:微分电路波形
如图10为(反相)比例运算电路。
图10:比例运算电路
如图11,Uo与Ui成线性关系。
图11:比例运算电路波形
❤如图12、图13为微分运算电路的充放电过程:
充电过程的电容C1可等效成一个可变电阻,C1开始充电时的容抗为0,电压不可突变则电压为0,运放-输入端得到的分压为正最大峰值,于是Uo为运放的负最大峰值,随着电容充满电,U0逐渐变为0。
图12:微分运算电路-充电
放电过程的电容C1可等效成一个电压源,且电压不可突变,此时电流反向为最大值,R1电压瞬间反向也为最大值,运放-输入端得到的分压则为负最大峰值,于是Uo为运放的正最大峰值,随着电容放完电,U0逐渐变为0。
图13:微分运算电路-放电
❤如图14为微分运算电路的输入输出波形,联系前面的分析结果,则Uo反映的是Ui的变化率,这样就达到了预判超前的效果。
图14:微分运算电路波形
❤如图15为微分运算仿真电路,为了防止运放出现饱和,必须限制输入电流,实际使用时需要在电容C1输入端串联一个小电阻R2。串联电阻后的电路已经不是理想微分运算电路了,但是只要输入信号周期大于2倍RC常数,可以近似为微分运算电路。
图15:微分运算仿真电路
❤如图16为微分运算仿真电路波形,其中IN-为运放-输入端的波形。
图16:微分运算仿真电路波形
❤如图17、图18为积分运算电路的充放电过程:
充电过程的电容C1可等效成一个可变电阻,C1开始充电时的容抗为0,电压不可突变则电压为0,运放-输入端得到的分压为0,于是Uo为0,随着电容充满电,运放-输入端得到的分压为正最大值,U0为运放的负最大峰值。
图15:积分运算电路-充电
放电过程的电容C1可等效成一个电压源,且电压不可突变,运放-输入端得到的分压也不可突变,随着电容放完电,于是Uo由负最大峰值逐渐变为0。
图16:积分运算电路-放电
❤如图17为积分运算电路的输入输出波形,联系前面的分析结果,则Uo反映的是Ui的积累过程,这样就达到了延迟稳定的效果。
图17:积分运算电路波形
❤如图18为积分运算仿真电路,为了防止运放出现饱和,实际使用时需要在电容C2两端并联一个电阻R3。并联电阻后的电路已经不是理想积分运算电路了,但是只要输入信号周期大于2倍RC常数,可以近似为积分运算电路。
图18:积分运算仿真电路
❤如图19为积分运算仿真电路波形,其中IN-为运放-输入端的波形。
图19:积分运算仿真电路波形
❤要点:
①微分、积分运算电路利用了电容充放电时其电压不可突变的特性达到调节输出的目的,对变化的输入信号有意义;
②微分D控制有超前预判的特性,积分I控制有延迟稳定的特性,在PID调节速度上,微分D控制>比例P控制>积分I控制;
来源|电卤药丸
—— The End ——
(0)

相关推荐

  • 功放输出直流电压原因分析

    大家都知道功放输出的是交流信号,对于扬声器来说,它的工作方式只对交流信号产生阻抗,对于直流信号它不产生任何的阻抗(等于零阻抗),这时的电流就为无穷大,因此扬声器线圈在直流信号下就等同于一根发热丝会被迅 ...

  • RC时间常数积分微分耦合

    微分电路积分电路都是将电阻,电容串联,外加一个输入信号. 微分电路是从电阻两端取输出信号. 积分电路是从电容两端取输出信号. 微分电路,积分电路主要是从计算方法上讲的.  低通滤波电路类似积分电路,是 ...

  • 电容器的结构、原理及作用

    目录 1.简介 2.基本结构 3.工作原理 4.作用 随着电子信息技术的飞速发展,数码电子产品的升级换代速率变快,以平板电视机(LCD和PDP).笔记本.数码照相机等商品主导的消费电子产品电子设备销售 ...

  • 关于旁路电容器消除电源噪声的方法,值得你学习

    时间:2020-10-24 22:38:36 [导读]什么是电源噪声?你知道如何处理吗?想象一下,您已经设计了一个不错的运算放大器电路,并开始对其进行原型设计,但失望地发现该电路无法按预期工作或根本无 ...

  • 不谈公式更易懂!牛人讲解微分、积分电路

    很多朋友觉得PID是遥不可及,很神秘,很高大上的一种控制,对其控制原理也很模糊,只知晓概念性的层面,知其然不知其所以然,那么本文从另类视角来探究微分.积分电路的本质,意在帮助理解PID的控制原理. ( ...

  • 牛人讲解微分、积分电路,不谈公式更易懂

    很多朋友觉得PID是遥不可及,很神秘,很高大上的一种控制,对其控制原理也很模糊,只知晓概念性的层面,知其然不知其所以然,那么本文从另类视角来探究微分.积分电路的本质,意在帮助理解PID的控制原理. ( ...

  • 牛人讲解电容、微分、积分电路!不谈公式,不说教材更易懂!

    很多朋友觉得PID是遥不可及,很神秘,很高大上的一种控制,对其控制原理也很模糊,只知晓概念性的层面,知其然不知其所以然,那么本文从另类视角来探究微分.积分电路的本质,意在帮助理解PID的控制原理. ( ...

  • 只有认清社会的本质,才有资格谈竞争

    上学的时候,考试是简化版.单一维度的竞争,谁考的好,谁就能赢得机会.走入社会后,你会发现,竞争变成了全面的.多维度的混战,可谓八仙过海,各显神通.什么样的人最有竞争力? 本期读书,长小江想向你推荐这本 ...

  • 艺术的本质是破旧创新的过程,更是独领风骚的表现形式!

    艺术的本质是破旧创新的过程,更是独领风骚的表现形式!

  • 股市交易的本质,没有比此文说得更清楚了读懂这篇文章,少走弯路

    交易系统的构成并不是一夕之功,所谓江山易改,本性难移,况且投机所需要的许多品质正好是大多数人的弱点.假如是经历过市场检验而形成的体系,通常是正确的,错误的观念已经被筛选或者禁用了.随着接触到不同的市场 ...

  • 老子之“道”本质上是一种能量,更有可能是暗物质、暗能量

    道主生,道生万物,万物亦主生,因此万物皆有求生欲.皆有争取自己生存条件的动力和趋势,生为生,死亦为新生.所谓"得道多助失道寡助"的"得道"就是要象大自然一样合理 ...

  • 人性公式[研究古今中外人性本质问题所总结出来的公式]

    综述 理科是我的第一专业,所以我喜欢用数学表达式解释某些问题,这样既简单又便于理解.因为数学是一种没有阶级性的不受时空限制的所有智能生物都能释读的共同语言.大到天体的运行,小至微观粒子的运动,无不都在 ...

  • 富人智慧系列(序):时间的阴谋:让穷人更穷,富人更富

    水木年华138 我们常说"时间就是生命",似乎有些夸大,说到麻木,说到无所谓,说成顺口溜,以至于到现在这种状况:谁说这句话谁傻逼.也许,,我们应该反过来说,"生命就是时间 ...