ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)

ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测


输出结果

1、数据集可视化以及统计分析

2、优化baseline模型

ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——优化baseline模型

3、模型融合

ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合

设计思路

核心代码

LoR算法

clf_LoR = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
clf_LoR.fit(X, y)

#LoR算法
class LogisticRegression Found at: sklearn.linear_model.logistic

class LogisticRegression(BaseEstimator, LinearClassifierMixin,
    SparseCoefMixin):
    """Logistic Regression (aka logit, MaxEnt) classifier.

    In the multiclass case, the training algorithm uses the one-vs-rest (OvR)
    scheme if the 'multi_class' option is set to 'ovr', and uses the cross-
    entropy loss if the 'multi_class' option is set to 'multinomial'.
    (Currently the 'multinomial' option is supported only by the 'lbfgs',
    'sag' and 'newton-cg' solvers.)

    This class implements regularized logistic regression using the
    'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle
    both dense and sparse input. Use C-ordered arrays or CSR matrices
    containing 64-bit floats for optimal performance; any other input
     format
    will be converted (and copied).

    The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2
     regularization
    with primal formulation. The 'liblinear' solver supports both L1 and L2
    regularization, with a dual formulation only for the L2 penalty.

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    penalty : str, 'l1' or 'l2', default: 'l2'
    Used to specify the norm used in the penalization. The 'newton-cg',
    'sag' and 'lbfgs' solvers support only l2 penalties.

    .. versionadded:: 0.19
    l1 penalty with SAGA solver (allowing 'multinomial' + L1)

    dual : bool, default: False
    Dual or primal formulation. Dual formulation is only implemented for
    l2 penalty with liblinear solver. Prefer dual=False when
    n_samples > n_features.

    tol : float, default: 1e-4
    Tolerance for stopping criteria.

    C : float, default: 1.0
    Inverse of regularization strength; must be a positive float.
    Like in support vector machines, smaller values specify stronger
    regularization.

    fit_intercept : bool, default: True
    Specifies if a constant (a.k.a. bias or intercept) should be
    added to the decision function.

    intercept_scaling : float, default 1.
    Useful only when the solver 'liblinear' is used
    and self.fit_intercept is set to True. In this case, x becomes
    [x, self.intercept_scaling],
    i.e. a "synthetic" feature with constant value equal to
    intercept_scaling is appended to the instance vector.
    The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

    Note! the synthetic feature weight is subject to l1/l2 regularization
    as all other features.
    To lessen the effect of regularization on synthetic feature weight
    (and therefore on the intercept) intercept_scaling has to be increased.

    class_weight : dict or 'balanced', default: None
    Weights associated with classes in the form ``{class_label: weight}``.
    If not given, all classes are supposed to have weight one.

    The "balanced" mode uses the values of y to automatically adjust
    weights inversely proportional to class frequencies in the input data
    as ``n_samples / (n_classes * np.bincount(y))``.

    Note that these weights will be multiplied with sample_weight (passed
    through the fit method) if sample_weight is specified.

    .. versionadded:: 0.17
    *class_weight='balanced'*

    random_state : int, RandomState instance or None, optional, default:
     None
    The seed of the pseudo random number generator to use when
     shuffling
    the data.  If int, random_state is the seed used by the random number
    generator; If RandomState instance, random_state is the random
     number
    generator; If None, the random number generator is the RandomState
    instance used by `np.random`. Used when ``solver`` == 'sag' or
    'liblinear'.

    solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
    default: 'liblinear'
    Algorithm to use in the optimization problem.

    - For small datasets, 'liblinear' is a good choice, whereas 'sag' and
    'saga' are faster for large ones.
    - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs'
    handle multinomial loss; 'liblinear' is limited to one-versus-rest
    schemes.
    - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas
    'liblinear' and 'saga' handle L1 penalty.

    Note that 'sag' and 'saga' fast convergence is only guaranteed on
    features with approximately the same scale. You can
    preprocess the data with a scaler from sklearn.preprocessing.

    .. versionadded:: 0.17
    Stochastic Average Gradient descent solver.
    .. versionadded:: 0.19
    SAGA solver.

    max_iter : int, default: 100
    Useful only for the newton-cg, sag and lbfgs solvers.
    Maximum number of iterations taken for the solvers to converge.

    multi_class : str, {'ovr', 'multinomial'}, default: 'ovr'
    Multiclass option can be either 'ovr' or 'multinomial'. If the option
    chosen is 'ovr', then a binary problem is fit for each label. Else
    the loss minimised is the multinomial loss fit across
    the entire probability distribution. Does not work for liblinear
    solver.

    .. versionadded:: 0.18
    Stochastic Average Gradient descent solver for 'multinomial' case.

    verbose : int, default: 0
    For the liblinear and lbfgs solvers set verbose to any positive
    number for verbosity.

    warm_start : bool, default: False
    When set to True, reuse the solution of the previous call to fit as
    initialization, otherwise, just erase the previous solution.
    Useless for liblinear solver.

    .. versionadded:: 0.17
    *warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers.

    n_jobs : int, default: 1
    Number of CPU cores used when parallelizing over classes if
    multi_class='ovr'". This parameter is ignored when the ``solver``is set
    to 'liblinear' regardless of whether 'multi_class' is specified or
    not. If given a value of -1, all cores are used.

    Attributes
    ----------

    coef_ : array, shape (1, n_features) or (n_classes, n_features)
    Coefficient of the features in the decision function.

    `coef_` is of shape (1, n_features) when the given problem
    is binary.

    intercept_ : array, shape (1,) or (n_classes,)
    Intercept (a.k.a. bias) added to the decision function.

    If `fit_intercept` is set to False, the intercept is set to zero.
    `intercept_` is of shape(1,) when the problem is binary.

    n_iter_ : array, shape (n_classes,) or (1, )
    Actual number of iterations for all classes. If binary or multinomial,
    it returns only 1 element. For liblinear solver, only the maximum
    number of iteration across all classes is given.

    See also
    --------
    SGDClassifier : incrementally trained logistic regression (when given
    the parameter ``loss="log"``).
    sklearn.svm.LinearSVC : learns SVM models using the same algorithm.

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon,
    to have slightly different results for the same input data. If
    that happens, try with a smaller tol parameter.

    Predict output may not match that of standalone liblinear in certain
    cases. See :ref:`differences from liblinear <liblinear_differences>`
    in the narrative documentation.

    References
    ----------

    LIBLINEAR -- A Library for Large Linear Classification
    http://www.csie.ntu.edu.tw/~cjlin/liblinear/

    SAG -- Mark Schmidt, Nicolas Le Roux, and Francis Bach
    Minimizing Finite Sums with the Stochastic Average Gradient
    https://hal.inria.fr/hal-00860051/document

    SAGA -- Defazio, A., Bach F. & Lacoste-Julien S. (2014).
    SAGA: A Fast Incremental Gradient Method With Support
    for Non-Strongly Convex Composite Objectives
    https://arxiv.org/abs/1407.0202

    Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate
     descent
    methods for logistic regression and maximum entropy models.
    Machine Learning 85(1-2):41-75.
    http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf
    """
    def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0,
        fit_intercept=True, intercept_scaling=1, class_weight=None,
        random_state=None, solver='liblinear', max_iter=100,
        multi_class='ovr', verbose=0, warm_start=False, n_jobs=1):
        self.penalty = penalty
        self.dual = dual
        self.tol = tol
        self.C = C
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.random_state = random_state
        self.solver = solver
        self.max_iter = max_iter
        self.multi_class = multi_class
        self.verbose = verbose
        self.warm_start = warm_start
        self.n_jobs = n_jobs

    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like, shape (n_samples,) optional
            Array of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

            .. versionadded:: 0.17
               *sample_weight* support to LogisticRegression.

        Returns
        -------
        self : object
            Returns self.
        """
        if not isinstance(self.C, numbers.Number) or self.C < 0:
            raise ValueError(
                "Penalty term must be positive; got (C=%r)" % self.C)
        if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:
            raise ValueError(
                "Maximum number of iteration must be positive;"
                " got (max_iter=%r)" %
                self.max_iter)
        if not isinstance(self.tol, numbers.Number) or self.tol < 0:
            raise ValueError("Tolerance for stopping criteria must be "
                "positive; got (tol=%r)" %
                self.tol)
        if self.solver in ['newton-cg']:
            _dtype = [np.float64, np.float32]
        else:
            _dtype = np.float64
        X, y = check_X_y(X, y, accept_sparse='csr', dtype=_dtype,
            order="C")
        check_classification_targets(y)
        self.classes_ = np.unique(y)
        n_samples, n_features = X.shape
        _check_solver_option(self.solver, self.multi_class, self.penalty, self.
         dual)
        if self.solver == 'liblinear':
            if self.n_jobs != 1:
                warnings.warn("'n_jobs' > 1 does not have any effect when"
                    " 'solver' is set to 'liblinear'. Got 'n_jobs'"
                    " = {}.".
                    format(self.n_jobs))
            self.coef_, self.intercept_, n_iter_ = _fit_liblinear(X, y, self.C, self.
             fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.
             dual, self.verbose, self.max_iter, self.tol, self.random_state,
                sample_weight=sample_weight)
            self.n_iter_ = np.array([n_iter_])
            return self
        if self.solver in ['sag', 'saga']:
            max_squared_sum = row_norms(X, squared=True).max()
        else:
            max_squared_sum = None
        n_classes = len(self.classes_)
        classes_ = self.classes_
        if n_classes < 2:
            raise ValueError(
                "This solver needs samples of at least 2 classes"
                " in the data, but the data contains only one"
                " class: %r" %
                classes_[0])
        if len(self.classes_) == 2:
            n_classes = 1
            classes_ = classes_[1:]
        if self.warm_start:
            warm_start_coef = getattr(self, 'coef_', None)
        else:
            warm_start_coef = None
        if warm_start_coef is not None and self.fit_intercept:
            warm_start_coef = np.append(warm_start_coef,
                self.intercept_[:np.newaxis],
                axis=1)
        self.coef_ = list()
        self.intercept_ = np.zeros(n_classes)
        # Hack so that we iterate only once for the multinomial case.
        if self.multi_class == 'multinomial':
            classes_ = [None]
            warm_start_coef = [warm_start_coef]
        if warm_start_coef is None:
            warm_start_coef = [None] * n_classes
        path_func = delayed(logistic_regression_path)
        # The SAG solver releases the GIL so it's more efficient to use
        # threads for this solver.
        if self.solver in ['sag', 'saga']:
            backend = 'threading'
        else:
            backend = 'multiprocessing'
        fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
            backend=backend)(
            path_func(X, y, pos_class=class_, Cs=[self.C],
                fit_intercept=self.fit_intercept, tol=self.tol,
                verbose=self.verbose, solver=self.solver,
                multi_class=self.multi_class, max_iter=self.max_iter,
                class_weight=self.class_weight, check_input=False,
                random_state=self.random_state, coef=warm_start_coef_,
                penalty=self.penalty,
                max_squared_sum=max_squared_sum,
                sample_weight=sample_weight) for
            (class_, warm_start_coef_) in zip(classes_, warm_start_coef))
        fold_coefs_, _, n_iter_ = zip(*fold_coefs_)
        self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:0]
        if self.multi_class == 'multinomial':
            self.coef_ = fold_coefs_[0][0]
        else:
            self.coef_ = np.asarray(fold_coefs_)
            self.coef_ = self.coef_.reshape(n_classes, n_features +
                int(self.fit_intercept))
        if self.fit_intercept:
            self.intercept_ = self.coef_[:-1]
            self.coef_ = self.coef_[::-1]
        return self

    def predict_proba(self, X):
        """Probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        For a multi_class problem, if multi_class is set to be "multinomial"
        the softmax function is used to find the predicted probability of
        each class.
        Else use a one-vs-rest approach, i.e calculate the probability
        of each class assuming it to be positive using the logistic function.
        and normalize these values across all the classes.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        T : array-like, shape = [n_samples, n_classes]
            Returns the probability of the sample for each class in the model,
            where classes are ordered as they are in ``self.classes_``.
        """
        if not hasattr(self, "coef_"):
            raise NotFittedError("Call fit before prediction")
        calculate_ovr = self.coef_.shape[0] == 1 or self.multi_class == "ovr"
        if calculate_ovr:
            return super(LogisticRegression, self)._predict_proba_lr(X)
        else:
            return softmax(self.decision_function(X), copy=False)

    def predict_log_proba(self, X):
        """Log of probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]

        Returns
        -------
        T : array-like, shape = [n_samples, n_classes]
            Returns the log-probability of the sample for each class in the
            model, where classes are ordered as they are in ``self.classes_``.
        """
        return np.log(self.predict_proba(X))

相关文章
EL之Bagging:kaggle比赛之利用泰坦尼克号数据集建立Bagging模型对每个人进行获救是否预测
ML之LoR:kaggle比赛之利用泰坦尼克号数据集建立LoR模型对每个人进行获救是否预测
ML之RF:kaggle比赛之利用泰坦尼克号数据集建立RF模型对每个人进行获救是否预测
ML之SVM:基于Js代码利用SVM算法的实现根据Kaggle数据集预测泰坦尼克号生存人员

(0)

相关推荐