三角函数的诱导公式
知识点睛
诱导公式
各三角函数值在各象限的符号
sinα cosα tanα
诱导公式一
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六
±α及±α与α的三角函数值之间的关系:
sin(+α)= cosα
cos(+α)= -sinα
tan(+α)= -cotα
cot(+α)= -tanα
sin(-α)= cosα
cos(-α)= sinα
tan(-α)= cotα
cot(-α)= tanα
sin(+α)= -cosα
cos(+α)= sinα
tan(+α)= -cotα
cot(+α)= -tanα
sin(-α)= -cosα
cos(-α)= -sinα
tan(-α)= cotα
cot(-α)= tanα
(以上k∈Z)
奇变偶不变 符号看象限