OpenCV探索之路(十):图像修复技术

在实际应用中,我们的图像常常会被噪声腐蚀,这些噪声或是镜头上的灰尘或水滴,或是旧照片的划痕,或者是图像遭到人为的涂画(比如马赛克)或者图像的部分本身已经损坏。如果我们想让这些受到破坏的额图片尽可能恢复到原样,Opencv能帮我们做到吗?

OpenCV真的有这个妙手回春的功能!别以为图像修补的工作只能用PS或者美图秀秀那些软件去做,其实由程序员自己写代码去做更加高效!

图像修复技术的原理是什么呢?

简而言之,就是利用那些已经被破坏的区域的边缘, 即边缘的颜色和结构,根据这些图像留下的信息去推断被破坏的信息区的信息内容,然后对破坏区进行填补 ,以达到图像修补的目的。

OpenCV中就是利用inpaint()这个函数来实现修复功能的。

void inpaint( InputArray src, InputArray inpaintMask,
                           OutputArray dst, double inpaintRadius, int flags );
  • 第一个参数src,输入的单通道或三通道图像;

  • 第二个参数inpaintMask,图像的掩码,单通道图像,大小跟原图像一致,inpaintMask图像上除了需要修复的部分之外其他部分的像素值全部为0;

  • 第三个参数dst,输出的经过修复的图像;

  • 第四个参数inpaintRadius,修复算法取的邻域半径,用于计算当前像素点的差值;

  • 第五个参数flags,修复算法,有两种:INPAINT_NS 和I NPAINT_TELEA;

函数实现关键是图像掩码的确定,可以通过阈值筛选或者手工选定,按照这个思路,用三种方法生成掩码,对比图像修复的效果。

#include <imgproc\imgproc.hpp>
#include <highgui\highgui.hpp>
#include <photo\photo.hpp>

using namespace cv;

//全区域阈值处理+Mask膨胀处理
int main()
{
Mat imageSource = imread("lol17.png");
if (!imageSource.data)
{
return -1;
}
imshow("原图", imageSource);
Mat imageGray;
//转换为灰度图
cvtColor(imageSource, imageGray, CV_RGB2GRAY, 0);
Mat imageMask = Mat(imageSource.size(), CV_8UC1, Scalar::all(0));

//通过阈值处理生成Mask
threshold(imageGray, imageMask, 240, 255, CV_THRESH_BINARY);
Mat Kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
//对Mask膨胀处理,增加Mask面积
dilate(imageMask, imageMask, Kernel);

//图像修复
inpaint(imageSource, imageMask, imageSource, 5, INPAINT_TELEA);
imshow("Mask", imageMask);
imshow("修复后", imageSource);
waitKey();
}

下面就是修复效果,感觉很不错吧!不过仔细一看,感觉跟原图还是发生了一些差异,比如图中剑圣头上的那颗亮点,颜色发生了变化。这个就是修复后的副作用!毕竟作出了修复,付点代价还是要的。受损是由于是图像全区域做阈值处理获得的掩码,图像上部分区域也被当做掩码对待,导致部分图像受损。

有些图片可能就会修复得很好,比如以下这幅,你根本看不出哪里有明显的副作用。

是不是所有受损的图片都能较好地还原呢?那当然不是,有些图片受损太严重的,或者在某些复杂区域受损的,OpenCV也很难帮你修复过来。

比如以下这幅,因为受损有些区域在一些很复杂的位置,所以修复起来效果不怎么样。

上面提到其他无辜的而区域会受损,这个问题能解决一下吗?可以的,那就得自己定义一块需要修复的而区域,不需要修复的区域我们不动它就是了。

#include <imgproc/imgproc.hpp>
#include <highgui/highgui.hpp>
#include <core/core.hpp>
#include <photo/photo.hpp>

using namespace cv;

Point ptL, ptR; //鼠标画出矩形框的起点和终点
Mat imageSource, imageSourceCopy;
Mat ROI; //原图需要修复区域的ROI

 //鼠标回调函数
void OnMouse(int event, int x, int y, int flag, void *ustg);

//鼠标圈定区域阈值处理+Mask膨胀处理
int main()
{
imageSource = imread("lol17.png");
if (!imageSource.data)
{
return -1;
}
imshow("原图", imageSource);
setMouseCallback("原图", OnMouse);
waitKey();
}
void OnMouse(int event, int x, int y, int flag, void *ustg)
{
if (event == CV_EVENT_LBUTTONDOWN)
{
ptL = Point(x, y);
ptR = Point(x, y);
}
if (flag == CV_EVENT_FLAG_LBUTTON)
{
ptR = Point(x, y);
imageSourceCopy = imageSource.clone();
rectangle(imageSourceCopy, ptL, ptR, Scalar(255, 0, 0));
imshow("原图", imageSourceCopy);
}
if (event == CV_EVENT_LBUTTONUP)
{
if (ptL != ptR)
{
ROI = imageSource(Rect(ptL, ptR));
imshow("ROI", ROI);
waitKey();
}
}
//单击鼠标右键开始图像修复
if (event == CV_EVENT_RBUTTONDOWN)
{
imageSourceCopy = ROI.clone();
Mat imageGray;
cvtColor(ROI, Gray, CV_RGB2GRAY); //转换为灰度图
Mat imageMask = Mat(ROI.size(), CV_8UC1, Scalar::all(0));

//通过阈值处理生成Mask
threshold(imageGray, imageMask, 235, 255, CV_THRESH_BINARY);
Mat Kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
dilate(imageMask, imageMask, Kernel);  //对Mask膨胀处理
inpaint(ROI, imageMask, ROI, 9, INPAINT_TELEA);  //图像修复
imshow("Mask", imageMask);
imshow("修复后", imageSource);
}
}

这种方法就需要我们人为地画出要修复的区域,这样就不会影响区域之外的图像了。

首先按住鼠标左键将待修复区域框出来。

然后对框出来的区域点击鼠标右键,就可以进行修复了。

修复的而效果确实比上面的方法要好!

总而言之,图像修复技术在一些简单,颜色单调的图像上进行修复得到的而效果是相当好的,而在一些细节或者复杂的部分进行修复,得到的复原图像的效果就比较一般了。比如在一些背景部分进行修复效果都不错,而在边缘细节上的修复就能看出问题了!

(0)

相关推荐

  • 图像特征之傅里叶描述子

    使用C++.opencv获取轮廓的傅里叶描述子 傅里叶描述子是一种图像特征,具体来说,是一个用来描述轮廓的特征参数.其基本思想是用物体边界信息的傅里叶变换作为形状特征,将轮廓特征从空间域变换到频域内, ...

  • (7条消息) OpenCV绘制文字、图形

    文章目录 一.文字putText 二.线line 三.矩形rectangle 四.圆circle 五.椭圆ellipse() color问题:图形的颜色会受到图像通道数的影响.如图像是灰度图,那么图形 ...

  • 【从零学习OpenCV 4】图像修复

    重磅干货,第一时间送达 经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍<OpenCV 4开发详解>.为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通 ...

  • SIGGRAPH提出的图像修复技术

    小白导读 最近小白读了一篇基于深度学习的图像修复技术论文Globally and Locally Consistent Image Completion,让小白对图像修复技术产生了好奇,本期小白为各位 ...

  • OpenCV探索之路(十六):图像矫正技术深入探讨

    刚进入实验室导师就交给我一个任务,就是让我设计算法给图像进行矫正.哎呀,我不太会图像这块啊,不过还是接下来了,硬着头皮开干吧! 那什么是图像的矫正呢?举个例子就好明白了. 我的好朋友小明给我拍了这几张 ...

  • OpenCV探索之路(五):图片缩放和图像金字塔

    对图像进行缩放的最简单方法当然是调用resize函数啦! resize函数可以将源图像精确地转化为指定尺寸的目标图像. 要缩小图像,一般推荐使用CV_INETR_AREA来插值:若要放大图像,推荐使用 ...

  • 利用OpenCV实现图像修复(含源码链接)

    图像修复技术应用在什么地方呢? 想想一下,我们有一张非常棒的相片,但是由于时间比较久远,没有电子版留底,而纸质版的又十分不便于保存.因此长采用扫描的方式获得电子版.但是非常不幸,扫描过程中落入了一根头 ...

  • 权威发布:《麻省理工科技评论》2021年“全球十大突破性技术”

    权威发布:《麻省理工科技评论》2021年“全球十大突破性技术”

  • 生态护坡生态修复技术的概念、原理及技术应用

        喝"地质魂酒"   点击购买  敬地质精神 来源:漫谈工程地质

  • 机器人领域十大前沿技术

    近些年来,机器人行业发展迅速,机器人被广泛应用于各个领域尤其是工业领域,不难看出其巨大潜力.与此同时,我们也必须认识到机器人行业的蓬勃发展,离不开先进的科研进步和技术支撑.以下,我们将盘点十大机器人最 ...

  • 一个 SAP 开发工程师十余年的技术写作之路回顾

    这是 Jerry 2021 年的第 31 篇文章,也是汪子熙公众号总共第 307 篇原创文章. 本文目录 汪子熙公众号的风格定位 为什么我会开始在微信公众号上书写技术文章 我的写作素材从哪里来 坚持了 ...