【数据结构与算法】第2章-算法


总结:
算法的定义: 算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每一条指令表示一个或者多个操作。
算法的特性: 输入、输出、有穷性、确定性、可行性。
算法的设计要求: 正确性、可读性、健壮性、高效率和低存储。
算法的度量方法: 事后统计方法、事前分析估算方法


《大话数据结构》第2章阅读笔记。

1 算法定义

算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每一条指令表示一个或者多个操作。

2 算法的特性

五大基本特性:输入、输出、有穷性、确定性和可行性。

2.1 输入输出

算法具有零个或者多个输入,至少有一个或者多个输出。

2.1 有穷性

指算法在执行完有限的步骤后,自动结束而不会出现无限循环,并且每个步骤在可接受的步骤内纸箱完成。

2.3 确定性

算法的每一个步骤都具有确定的含义,不会出现二义性。

2.4 可行性

算法的每一步骤都是可行的,也就是说,每一步都能通过执行有限次数完成。

3 算法设计的要求

3.1 正确性

算法的正确性是指算法至少应该具有输入、输出和加工处理无歧义性、能够正确反映问题的需求、能够得到问题的正确答案。

3.2 可读性

算法设计的另一目的是为了便于阅读、理解和交流。

3.3 健壮性

当输入数据不合法时,算法也能作出相关处理,而不是产生异常或者莫名奇妙的结果。

3.4 时间效率高和存储量低

设计算法要尽量满足时间效率高和存储量低的需求。

4 算法效率的度量方法

4.1 事后统计方法

4.2 事前分析估算法

在计算机程序编制前,依据统计方法对算法进行估算。
基本操作的数量必须表示成输入规模的函数。

5 函数的逐渐增长

超过整数N,f(N)总是大于g(n),f(n)的增长渐进快于g(n).

  • 最高次项的常数不重要

  • 最高次项指数越大,变增长地越快。

  • 其他次项和常数常常可以忽略

6 算法时间复杂度

6.1 算法时间复杂度定义

在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级别。
算法的时间复杂度,也就是算法的时间度量,记作:T(n)=O(f(n))。他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中f(n)是问题规模的n的摸个函数。

使用大写 O() 来体现算法时间复杂度的记发,称之为大 O 记法。
一般情况下,随着n的增长,T(n)增长最慢的算法是最优算法。

6.2 推导大O阶方法

推导大O阶:

  1. 用常数1以取代运行时间中的所有加法常数。

  2. 在修改后的运行次数函数中,只保留最高阶项。

  3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数。

得到的结果就是大O阶。

6.3 常数阶

运行次数函数是f(n)=3,根据第一条,时间复杂度直接记为O(1)

6.4 线性阶

关键就是分析循环结构的运行情况。

O(n)

for(int i = 0; i<n; i  ){/* 时间复杂度为O(1)的程序步骤序列 */}

6.5 对数阶

int count = 1;while (count < n){count = count * 2;/* 时间复杂度为O(1)的程序步骤序列 */}

设循环次数为想,则 2 x = n 2^x=n 2x=n --> x = l o g 2 n x=log_2n x=log2n,所以 O ( l o g 2 n ) O(log_2n) O(log2n)

6.6 平方阶

O ( n 2 ) O(n^2) O(n2)

int i ,j;for (i = 0; i < m; i  ){for(j = 0; j < n; j  ){/* 时间复杂度为O(1)的程序步骤序列 */}}

&O(m x n)&

int i ,j;for (i = 0; i < m; i  ){for(j = 0; j < n; j  ){/* 时间复杂度为O(1)的程序步骤序列 */}}

7 常见的时间复杂度

执行次数函数 非正式术语
12 12 12 O ( 1 ) O(1) O(1) 常数阶
2 n 3 2n 3 2n 3 O ( n ) O(n) O(n) 线性阶
3 n 2 2 n 1 3n^2 2n 1 3n2 2n 1 O ( n 2 ) O(n^2) O(n2) 平方阶
5 l o g 2 n 20 5log_2n 20 5log2n 20 O ( l o g n ) O(log n) O(logn) 对数阶
2 n 3 n l o g 2 n 19 2n 3nlog_2n 19 2n 3nlog2n 19 O ( n l o g n ) O(n log n) O(nlogn) n l o g n nlogn nlogn阶
6 n 3 2 n 2 3 n 4 6n^3 2n^2 3n 4 6n3 2n2 3n 4 O ( n 3 ) O(n^3) O(n3) 立方阶
2 n 2^n 2n O ( 2 n ) O(2^n) O(2n) 指数阶

O ( 1 ) < O ( n ) < O ( n 2 ) < O ( l o g n ) < O ( n l o g n ) < O ( n 3 ) < O ( 2 n ) < O ( n ! ) < O ( n n ) O(1) < O(n) < O(n^2) < O(log n) < O(n log n) < O(n^3) < O(2^n) < O(n!) < O(n^n) O(1)<O(n)<O(n2)<O(logn)<O(nlogn)<O(n3)<O(2n)<O(n!)<O(nn)

8 最坏情况与平均情况

通常提到的运行时间都是最坏情况的运行时间。
平均情况是期望的运行时间。

9 算法空间复杂度

空间开销换取计算时间
算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式记作: S ( n ) = O ( f ( n ) ) S(n)=O(f(n)) S(n)=O(f(n)),其中n为问题规模,f(n)为语句关于n所占存储空间的函数。

来源:https://www.icode9.com/content-1-825101.html

(0)

相关推荐

  • 算法复杂度分析

    算法复杂度分析

  • 时间复杂度和空间复杂度,一看就懂,面试前必过一遍

    一.定义 时间和空间是程序的一个硬性指标,一个用来衡量 代码执行的速度 ,一个用来衡量 存储空间的大小 程序 =  数据结构 + 算法 时间复杂度:就是执行程序的快慢,速度越快,时间复杂度就越好. 空 ...

  • 关于时间复杂度,你不知道的都在这里

    相信每一位录友都接触过时间复杂度,「代码随想录」已经也讲了上百道经典题目了,是时候对时间复杂度来一个深度的剖析了,很早之前就写过一篇,当时文章还没有人看,Carl感觉有价值的东西值得让更多的人看到,哈 ...

  • 「数据结构与算法」哈希算法的原理和应用详解

    在程序员的实际开发中,哈希算法常常能用得到,本文以哈希算法的原理和应用为核心,和大家详细讲解一下哈希算法的概念.常见算法以及原理.在信息安全的应用等等. 一.概念 哈希表就是一种以 键-值(key-i ...

  • 粤教版必修1第三章算法基础课后习题

    信息技术 必修1 <数据与计算> 第三章 算法基础 学业评价 一.单选题 1.人们利用计算机解决问题的基本过程为(      ) ①调试运行程序 ②分析问题③设计算法④问题解决⑤编写程序 ...

  • 《算法帝国》:被算法和算法交易改变的未来

    当我们用崭新的视角去观察与思考,世界就会变成另外的模样.这是我们筹备举办"改变未来的算法与算法交易"研讨会的初衷. 美国雄霸全球依赖华尔街与硅谷等强大支柱,而近年来,算法对华尔街的 ...

  • 步进电机驱动算法——梯形加减速算法

    步进电机梯形加减速 电机的控制方式一般分为开环控制与闭环控制两种控制方式,其中开环控制原理框图如下: 这种种控制方式的特点是:控制简单.实现容易.价格较低,这种开环控制方式,负载位置对控制电路没有反馈 ...

  • 【枕边算法】回文算法题PHP实现

    ①选择任一数值: ②翻转此数值(例如,选择13则翻转为31),并将原数值和翻转数值相加(13+31): ③相加结果若不是回文,则返回②反复执行,若是回文则终止算法 举例: 13+31=44,44是回文 ...

  • 陈根:从算法权利到算法权力,打破算法赋权失衡

    文/陈根 当前,大数据的快速发展正使算法融入并重塑人们的生活,算法作为机器可读的程序性指令,利用汇集人类行为的大规模数据集影响着人们方方面面的社会生活.比如,算法推荐新闻.推送广告.排名商品.安排专车 ...

  • 智能优化算法:灰狼优化算法

    文章目录 智能优化算法:灰狼优化算法-附代码 1.1 包围猎物 1.2 狩猎 1.3 攻击猎物(开发) 1.4 搜索猎物(勘探) 1.算法原理 2.算法流程图 3.算法结果 4.参考文献 5.Matl ...

  • 简单实用算法—分布式自增ID算法snowflake(雪花算法)

    目录 算法概述 ID结构 算法特性 算法代码(C#) 算法测试 算法概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先 ...

  • 算法创作|如何评价算法

    问题描述在我们解决问题时,我们可以通过许多的途径去实现.而在这过程中,我们所用的途径可能是正确的或错误的,也有可能是简单或复杂的.同样,我们在编写算法时,会出现以上情况.例如编写1到100求和问题的P ...