六年级奥数试题及答案:行程问题之相遇问题

三个人自A地到B地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个 人,到某处D与第三个人相遇,然后两人同乘自行车前往B;第二个人在C处下车后继续步行前往B地.结果三个人同时到达B地.那么,C距A处多少千米?D距 A处多少千米?

考点:相遇问题;追及问题.

分析:此题可以通过画图分析,逐步理清解题思路,关键是弄清骑车的速度与步行的速度之间的关系,由“自行车的速度比步行速度快两倍”.可知自行车的速度是步行速度的3倍,由此解答即可.

解:如图,第一、二两人乘车的路程AC,应该与第一、三两人骑车的路程DB相等,否则三人不能同时到达B点.同理AD=BC.

当第一人骑车在D点与第三人相遇时,骑车人走的路程为AD+2CD,第三人步行路程为AD.

因自行车速度比步行速度快2倍,即自行车速度是步行的3倍,

故AD+2CD=3CD,从而AD=CD=BC.

因AB=36千米,故AD=CD=BC=12千米,故C距A24千米,D距A12千米.

答:C距A处24千米,D距A处12千米.

点评:此题数量关系比较复杂,可以通过画图分析,理清解题思路,寻求解答方法.

(0)

相关推荐