【初三必读】“纵横比”“矩形大法”破解翻折问题
上一讲,我们介绍了特殊的“12345”模型,本讲,我们介绍更一般的“矩形大法”,结合“纵横比”,破解翻折类问题!
作为几何知识的重要组成部分,翻折问题历来是全国中考命题的热点。但绝大多数学生对此类问题毫无头绪,丢分情况十分严重,为此笔者进行了一些有益的尝试,试图为学生打开破解之道。限于篇幅,本文仅探究直角三角形的翻折问题。
由此我们得到一点关于倾斜的直线对称问题的基本通法:
其基本解题步骤:第一步,构造已知点的“纵横比”,即依附这点构造横平竖直的直角三角形;第二步,将该直角三角形进行翻折,并构造出翻折直角三角形的外接矩形;第三步,利用一线三直角,得出相似,并根据相似比由小到大巧设各条边,列出二元一次方程组求解。
初中阶段,处理点到直线距离的求解方法主要有两种:
第一, 通过构造该点的纵横比,得出这个直角三角形的面积,再求出斜边,从而求解。
第二, 通过构造该点的纵横比,而后将该三角形进行翻折,再进行矩形构造法,得出其对称点坐标,最后根据两点间距离公式求解。
通过以上探究,我们不难发现,求解任意一点关于直线对称点问题,可通过矩形构造法,同时可以得出一个“副产品”,即点到直线距离,当然用矩形构造法求解点到直线距离稍显麻烦;如果题目仅需要求出点到直线距离,可通过面积方法求解.
接下来,我们一起探究圆切点的求解问题,众所周知,经过圆外一点,可以作该圆的两条切线,两切点关于圆心与该点的连线对称,因此求解圆的切点问题与翻折问题实质等同。
解题反思:这两道题都是求解圆切点问题,我们仅需要构造倾斜直角三角形的外接矩形,问题很快解决,可见这两个问题实质等同。
解题反思:以上三道题目都是求解圆切点问题,圆的位置各不相同,神奇的是,我们居然可以采用同样一种方法处理这些问题,可见利用纵横比思想,利用矩形构造法的确是解决此类问题的通法。最后我们来领略一下2016 年天津市中考数学压轴题,共同感受矩形构造法的神奇魅力。
解题反思:某些直角梯形的翻折问题可以转化成直角三角形的翻折问题,而后对其进行矩形构造,回归到我们十分熟悉的知识体系,由此可见,矩形构造法不仅适用于直角三角形的翻折,对直角梯形的翻折问题同样适用,此时我们忍不住想再看看是否还有其他题目可以验证这个神奇的思路呢?2016 年徐州市中考压轴题正是一个绝佳的素材,我们一起来探究一番。
解题反思:以上两道都属于直角梯形的翻折,从本质上来说,直角梯形的翻折与直角三角形的翻折完全一样,我们仅需要将其图形补充完整,回归到我们的知识体系下,问题将迎刃而解。